In a nutshell: Gradient descent

Given a continuous and differentiable real-valued function f of a vector variable with one initial approximation of a minimum \mathbf{u}_0 , gradient descent converts the problem of approximating a solution in n dimensions to approximating the solution in one dimension, one step at a time.

Parameters:

- $\varepsilon_{\text{step}}$ The maximum error in the value of the minimum cannot exceed this value.
- \mathcal{E}_{abs} The difference in the value of the function after successive steps cannot exceed this value.
- *N* The maximum number of iterations.
- 1. Let $k \leftarrow 0$.
- 2. If k > N, we have iterated N times, so stop and return signalling a failure to converge.
- 3. Calculate $\nabla f(\mathbf{u}_k)$ and define a function $f(\mathbf{u}_k \alpha \nabla f(\mathbf{u}_k))$. This is a real-valued function of a real variable α , so use an algorithm to find a minimum in the direction of $-\nabla f(\mathbf{u}_k)$. Let this minimum be $\alpha_k > 0$.
- 4. Set $\mathbf{u}_{k+1} \leftarrow \mathbf{u}_k \alpha_k \nabla f(\mathbf{u}_k)$.
- 5. If $\|\mathbf{u}_{k+1} \mathbf{u}_k\|_2 < \varepsilon_{\text{step}}$ and $|f(\mathbf{u}_{k+1}) f(\mathbf{u}_k)| < \varepsilon_{\text{abs}}$, return \mathbf{x}_{k+1} .
- 6. Return to Step 2.